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Abstract— Unlike many intrusion detection systems that rely packet inspection and forwarding at line speed and so tadguar
mostly on labeled training data, we propose a novel technique for against the problem of DoS attacks.
anomaly detection based on unsupervised learning. We apply this 1, his haner we propose a novel Anomaly Detection Sys-
technique to counter denial-of-service attacks. Initial simulation o . . e
results suggest that significant improvements can be obtained. €M (ADS). Like many such schemes, it functions by defining
We discuss an implementation of our anomaly detection system @ baseline of normal or expected behavior and then deter-
in the ForCES router architecture and evaluate it using recorded mining if the current behavior observed deviates suffi¢yent
attack traffic. from what is expected. However, unlike standard supervised
learning technigues that imply the existence of a set ofi¢éabe
, i training data, or a sequence of input/output pairs where the

The research community has expressed _r_nuch mter_est 6Efput is the desired classification, we use anomaly detecti
cently to better understand, model and mitigate Denial-Qlj5¢ goes not require amypriori knowledge about the network
Service (DoS) attacks [1] [2] [3]. A DoS attack may b&21 110 This is commonly known as unsupervised learning.
characterized as an explicit attempt to exhaust key ressur ur concern is that training data, if available, is limitax t

(e.9. network bandwidth, computing power, operating datg,qt yaffic trends that may not reflect the nature of future
systems_ structurgs) of the system unde_r attack. Curreengef attacks. Our approach is to combine unsupervised learning
mechanisms against DoS attacks consist of three Compone{géhniques with anomaly system detection in order to craate

« Prevention: ingress filtering, anti-spoofing mechanismsyopust mechanism to counter novel attacks. Our ADS works by

« Detection identifying anomalies and tracking suspiciougrouping packets based on IP header fields into a small number

traffic patterns. of aggregates or so-called clusters. We show how tracking

« Responserate limiting, filtering [4] or traceback [5].  the behavior of these clusters over time can give additional
Nevertheless, even if they are conceptually simple and aiees about the likelihood of an attack. We investigate the
beginning to be well-documented, DoS attacks can usuailyplementation of ADS in the context of a network processor
bypass existing defense mechanisms through slight vam&ti based router architecture and give the details of our design
in their forms. implemented on an Intel IXP 2800 development platfarm

Edge networks often include Intrusion Detection SystemsThe outline for the remainder of this paper is as follows.
(IDS) in order to mitigate some forms of DoS attacks. Mosection Il describes the proposed ADS and provides simu-
of these IDS employ signature detectors [8], that scan incomtion results for its performance. Section Il considens t
ing traffic, match it to predefined attack patterns, and raig@plementation of ADS on a next-generation router architec
adequate alarms in case of a hit. Subsequent actions takenupg platform and discusses the performance results @atain
other components of the IDS include attack packet filterinrom the hardware. The final section discusses future resear
flow blocking, and traceback. In order for this technique tdirections.
work, accurate characterizations of attack patterns mesp k
up with a multitude of DoS attack flavors and versions, which Il. ANOMALY DETECTION SYSTEM
is problematic in practice.

Limitations of existing techniques have spurred interast
alternatives based on statistical learning. The basicsthsuo
apply known learning techniques (both supervised and un
pervised) to network traffic in order to extract salient feas
and characteristics for attack traffic detection. Conculye
advances in router architecture including the availabitif
next generation specialized network processors have mad%ertain commercial equipment, instruments, or materials argifel in
the implementation of these traditionally complex alduris this paper in order to specify the experimental procedurayaately. Such
possible directly in forwarding hardware. Thus implemegti identification is not intended to imply recommendation or esdorent by the

. . . _ . National Institute of Standards and Technology, nor is fémded to imply
powerful but computational intensive statistical algumits on

¢ that the materials or equipment identified are necessarilybést available
fast network processors holds the promise that we can perfofor the purpose.

I. INTRODUCTION

i In this section, we describe ADS, the proposed anomaly
detection system, which consists of two main componenjs, (1
a clustering algorithm, (2) and an anomaly detection scheme
We will start by describing the clustering algorithm andrthe
highlight some techniques that can be used for anomaly
detection.



A. Clustering Algorithm duster

Our goal is to aggregate the network traffic into a relatively
small number of clusters, between 5 and 20. The clustering is contret s

done using the k-means algorithm [9], with batch processing o o ——

for the training set. A n-dimensional vector (including tife " we: Agoritm [N
TCP or UDP packet headers) represents each packet going on L :

a network link. We use a splitting procedure to initializes th NEEENe e ks

centroids in the algorithm. First, we calculate the centrof

the training packet sample, and then perturb it by a small Fig. 1. DoS Attack Passive Reaction.

vectore to get centroids 4+ ¢ andc —e. Applying the k-means

algorithm gives two optimized centroid, and c,. We then

repeat the splitting and optimization process for a preeefindynamics of a possible passive reaction. On each routetbutp
number of iterations. We define the diffusion of a cluster byhe card, clusters are mapped to different queues. Packets
the mean distance between each sample of a given cluster @agkring the system are compared to the centroids computed,
the centroid of this cluster. At each splitting step, thifudion so each packet mapped to centroid i ends up in queue i. By
is compared to a given threshold. The less diffused a clisterforcing the illegitimate or bad traffic to be clustered intoeo

the more compacted it is. If the cluster is compacted enougit, a small number of clusters and then mapped into a small

no further splitting occurs. The algorithm uses the Maravatt number of queues, a rate-limiting effect is accomplished.
distance measure defined as follows:

=yl = O |z — w5, @
j=1 As mentioned previously, clustering represents the fieg st

In order to avoid scaling issues among different dimensiorf@ @nomaly detection. The next step consists of tracking
each value is first normalized by its maximum value durinf® changes of each cluster's centroid over time. Here, we
the epoch. We have tested other distance measures, butc@fesider the use of three different centroid charactesisio

Manhattan distance, besides being as efficient as the pth8f{€rmine and track changes: compactness, number of sample

appears to be the lightest in terms of computation time. TRE" cluster, and cluster dimensions. We discuss each one
base algorithm initially introduced in [6] is described gl 1N tUrn. The observations are based on analysis of several
hundred traces of attack traffic collected from simulatiand

measurements of networks of varying size (50 - 500 nodes).

B. Anomaly Detection

Compute centroid of training sample;
Split centroid into 2 centroids;

Run k-means algorithm to optimize 2 centroids; Compactness
for N iterationsdo Most brute force DoS attack flows analyzed are characterized
foreach centroid do by a low diffusion (dense flows). Thus, a low diffusion
if cluster associated is not sufficiently compactedrepresents a partial attack indicator.
then
Split into 2 centroids; .
Run k-means algorithm to optimize 2 Sample siz€ - .
centroids: Another indicator of attack traffic is a cluster with a veryga
end ’ size relative to other clusters detected during the same tim
end period. Since most attack traffic has similar charactessg.g.
end the same destination address, port ID) it generally endsiup i

the same cluster.

A merging procedure is performed at the end of the a&‘:luster dimensions
gorithm, in order to combine identical clusters, or cIusterF. I b that at the beginni d th d of
with close centroids. The diffusion, merge threshold, arel t inaly, we observe that at the beginning an € end ot an

perturbatione are chosen based on raw data traffic analys tack cluster dlmensmns suc.h as the IP ?ddfess’ protocol

and simulation results. _number, packet size vary _dra_ls_tlcally as the mixture of packe
These clusters can be used as part of a passive strategﬂ/ntwe network changes significantly.

attenuate DoS attacks even without explicit detectionc&in

similar packets will tend to cluster together, bad packetsAll the observations discussed above should raise together

will likely end up in the same cluster. This assumption iand individually some type of an attack flag that requires

particularly likely to be true for brute-force distributddloS further investigations on a specific cluster, activate ritig

attacks where packets share similar characteristics ssich dor traffic related to the suspicious cluster identified assign

destination IP address or a packet size. Fig. 1 depicts tteict queuing policies to strengthen the passive reaction



1 subnet 2 subnets TABLE |
10 devices 80 devices
hitp server 1 attacker PERCENTAGE OF PACKETS DROPPED PER SCENARIO

| | Legitimate traffic | illegitimate traffic |

Single Aggregate queue 411 9.7
8 queues + passive reaction 1.11 18.1
16 queues + passive reactign 0.22 20.4
g? @  bottleneck Iink_@ Eﬁ First, we analyze the results of the passive reaction. Table
shows the percentage of legitimate packets dropped (fitst co
2 subrets S suhoats. umn) and the number of illegitimate packets dropped (second
i + column) when there is a single output queue (first row), 8
Subnet under attack . ) . .
e il output queues combined with the passive reaction (second
ftp server row) and 16 output queues combined with the passive reaction

(third row). We note that the percentage of legitimate ptcke
dropped decreases when the passive reaction is active. This
percentage is relatively low because the average is done ove

1 subnet 2 subnets

i pocon=s the whole simulation and the loss occurs only during the
period when the network is under attack. On the other hand,
Fig. 2. Simple Test Network Topology. we observe that more illegitimate packets are dropped as the

number of queues increases. As the illegitimate traffic ends
. up in a smaller proportion of the clusters, these clustetk wi
C. Performance Evaluation contain a larger number of packets and will likely overflow

We evaluate the clustering algorithm presented earlier aftpre often, resulting in a higher packet drop rate.
show how the observations discussed previously can be useffurther analysis of the simulation results obtained allows
to effectively detect anomalies and potential DoS attaks. us to verify some of the anomaly detection observations
use OPNET to simulate a UDP flood attack in a 500-nodwted previously, concerning the sample size and the cluste
network. compactness.

1) Simulation Set-up:Fig. 2 shows the topology of the The normalized diffusion is shown over time in Fig. 3.
network simulated by OPNET. It consists of a total of 5060r the sake of presentation clarity, we show two clusters
end-user devices, 11 subnetshBip servers, ondtp server (Cluster 1 and Cluster 2) out of the eight obtained in the
and one mail server. The legitimate traffic is a combinatiggxperiment. Cluster 1 is related to legitimate traffic while
of http, smtpand ftp packets arranged as follows. The majo€luster 2 represents the attack traffic. Each of these ctuste
contribution comes fronhttp which represents 90% of therepresent at least 10% of the overall bandwidth making their
total traffic in bits, followed bysmtp and ftp traffic which characterization statistically significant (the remagnatusters
contribute 5% each. Each application is characterized byate either similar to Cluster 1 or have very little traffic
default OPNET profile and attributes. Similar to the attackssociated with them and therefore are not significant to the
model developed by Gregg et al [11], 3 attackers from ®@sults shown here.)
different subnets try to overflow the bottleneck link of the In Fig. 3 the diffusion of Cluster 1 varies around 2 and 4
network by sending UDP packets from spoofed IP addressastil the attack is scheduled to take place around 250 second
Out of the 10-minute simulation, the network is under attackt that time, we note a sharp dive of the Cluster 2 diffusion
for 4 minutes. We ran the simulation for a maximum of 16hat goes down to 0. We also notice a slight increase in the
centroids and each packet header is represented by a sierall fluctuations of the diffusion of Cluster 1 that is i
dimensional vector that contains: (1) a source address, éffected by the sudden drop in Cluster 2 diffusion. We verify
a destination address, (3) a protocol type, (4) a packet sifleat a similar pattern is effecting other clusters that arelar
(5) a source port, and (6) a destination port. While mappirtg Cluster 1.
centroids to output buffers provides a passive reactiondstm The very low diffusion value (which indicates that packets
DoS attack types, further analysis of the clustering restdin related to the cluster are very close to its centroid, thasttie
provide a more active response to a DoS attack. cluster is extremely compact) exhibited by Cluster 2 inttisa

2) Results Analysis:The analysis of the results revealghat the traffic being assigned to Cluster 2 has very simitar o
the following insights. During periods of no congestione thalmost identical characteristics. While, a low diffusionitself
bottleneck link is about 65% full on average, while during thmay not necessarily indicate attack traffic, this combinéith w
congested period, the offered load reaches over 100 percamtassessment of a large cluster should increase the tkelih
of capacity. In the case of n output queues, the length of eamthdetecting an attack. Note that the slight increase in the
gueue is 1/n of the length of the aggregate queue, so that thaiffusion for the other clusters is due to the clusterizatio
iS no net increase in memory usage. algorithm adapting to the arrival of a a new traffic pattern,
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which in this case represents the attack traffic.
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Fig. 5. Next-Generation Router Architecture.

over time can be another effective indicator. While the sampl
size forms the basis for any detection strategy, we see a
combination of compactness and dimension variations ey fai
effective in detection attack traffic.

I1l. HARDWARE IMPLEMENTATION

The emergence of new router architectures separating con-
trol and forwarding planes as shown in Fig. 5 that separates
the control and forwarding planes facilitates the distiiu of
control information such as intrusion detection notifioas
and alarms across a wide area network. This represents a
step towards the deployment of effective distributed mok®
for intrusion detection. In this new architecture, the Nartv
Element (NE) is logically separated into one or more Control
Elements (CEs) and one or more Forwarding Elements (FEs).

In this paper we focus on the FE and the availability of
highly specialized network processor units such as thd Inte
IXP 2800 in order to implement the computationally intemsiv
clustering algorithm that was described previously.

A. Clustering Algorithm Implementation

In order to implement the clustering algorithm in hardware,
we use the Intel IXDP2800 Advanced Development Platform.
This is composed of two IXP2800 network processors, and
is designed to support applications with traffic up to 10

We turn now to cluster dimensions. In Fig. 4, we plot ovebit/s. Each network processor contains a fast path that
time the centroids of all six parameters that were used #§€s highly optimized microengines, and an XScale core for
characterize Cluster 2, the cluster containing attackitraf additional packet processing. Ideally, to achieve highedpe
In this case, we observe a significant variation in the clusteacket forwarding, packets processing should remain in the
centroids coinciding with the attack that is occuring betwe microengines. Fig. 6 shows the main elements of the NP
200 and 500 seconds. When the attack ends at 500 secondspl@éorm that are relevant to our system.

note that the centroid values go back to their pre-attadkegal

1) Traffic going through the network processor is sampled

This represents another strong indicator for the presefice o
attack or suspicious traffic.

In summary, we can identify at least three indicators for
detecting the presence of suspicious or attack traffic. eSinc
we are mostly interested with attacks that involve large $low
and occupy large percentage of the bandwidth available, we
therefore use the flow or sample size as the first indicator. We
can then look at cluster compactness that indicates howepack
in the same cluster are related to each other. A large number
of packets that are very similar can point to a brute-force-
type attack where packets have very similar charactesistic 2)
Finally, we find that tracking the cluster dimensions, whach
the parameters used in the clusterization, and their V@t

and specific parameters such as the IP address, port
number, source and destination addresses, and protocol
IP, are extracted from each packet. Due to the very high
speed traffic and because the parameter extraction occurs
in the NP core, our implementation can achieve only a
10% sampling rate of the overall traffic seen. Although
this may represent a limitation in terms of the statistics
collected, 10% of a 1 Ghit/s link still represents a lot of
traffic and should provide a good approximation for the
overall traffic.

The XScale core operates in two phases. In the first
phase, samples are extracted by the microengines. Once
a predefined training set number is reached, the core
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stops collecting data and starts computing the clust " i
centroids.

3) At that point, the Control Unit receives information £
about the clusters from the core and decides on thg
next actions to follow. This unit can be either local or
remotely connected. We have used a simple co-located o
control unit for our experimentation.

4) & 4’) The Control Unit decides if the centroids need

150

utation T\mgms)

100

to be updated. It may also interact with the queue ‘o 1000 2000 3000 4000 5000
management to apply policies on the queues. The queue umber of Samples n Traning Set
scheduler implements a Deficit Round Robin (DRR) Fig. 8. Algorithm Performance.

algorithm on the queues of each port. The Control Unit

limits the number of credits available to each queue thus

rate-limiting bad traffic. parameters for théttack UDPflows are varied to emulate a
5) A filtering mechanism can be installed in the ingresdistributed 5-node UPD flood attack. Also note that Atack

side of the platform in order to stop suspicious traffic/PD traffic consists of a relatively low number of flows that

before it enters the router. Our work has been concernase a lot of bandwidth.

with the clustering algorithm and has not yet included Next we will discuss the hardware performance of the clus-

any input filters. tering algorithm in terms of computation speed and packets
dropped in the output queues.

) ] ) 1) Computation time:The real implementation allows us
Our experiment environment consists of the IXDP280f) quantify the time it takes to compute the clusters. This
platform running with VxWorks on the XScale core. Thigime depends on the number of samples collected and the
platform provides an interface with 10x1-Gigabit Etherng{ymper of centroids the algorithm computes. Fig. 8 shows the
ports. To generate traffic, we use 4x1-Gigabit Ethernetspo@omputation time for a training set of 256, 512, 1024, 2048,

from a Smartbits 6000B Performance Analysis System. As4 4096 packets, for 8, 16, and 32 centroids.
shown in Fig. 7, we use three ports to generate traffic and on&yjith training set sizes less than 2048, the computation time
to monitor and received the routed packets. The test traffignains less than 50 ms regardless of the number of centroids

B. Testbed and Hardware Performance Results

consists of the following: _ _ used. For larger training set sizes, the computation time
« Normal TCP 150 TCP flows totaling 800 Mbit/s. increases with the number of centroids used. The difference
« Normal UDP. 50 UDP flows totaling 150 Mbit/s. in computation time for 8 and 32 centroids is around 90 ms

« Attack UDP. 5 UDP flows representing 400 Mbit/s.  for a training set of 4096. We use a training set of 2048

The proportion chosen for the mix dfiormal TCPand and 16 centroids, which represents a good trade-off between
Normal UDP corresponds to realistic Internet traffic wher¢he implementation computation time and the accuracy of the
a ratio of TCP to UDP traffic is typically 8 or 9 to 1 (Noteclustering results.
that this ratio can vary slightly between different netwtyes 2) Queue Management PolicyAs described previously
without affecting our results). While for botdlormal TCPand ( II-A), by mapping each cluster to an outgoing queue and
Normal UDP flows the parameters used for the source arsktting a queue management policy to rate-limit outgoiaf; tr
destination addresses, the source and destination paoids, fic based on information from the anomaly detection control
packet sizes were different, all Attack UDP flows had the unit, we can effectively mitigate a DDoS attack that geresat
same destination address, port and packet size. Only theesowa large amount of traffic. Since attack traffic ends up in the



100 T T T T

Nomal TGP —— similarities and how they are related to one another, theuato
Altack UDP - of traffic sharing the same relations, and the evolution e$¢h
oL ] characteristics over time.

. We propose a suitable packet clustering algorithm and
a - implement it in simulation and on a network processor
platform. This shows the implementation feasibility of kuc
computationally intensive algorithm by taking advantade o
the ability of next-generation routers to perform compotat

in the forwarding plane and at line speed while other more
intelligent tasks to analyze and derive information froaffitc

1 monitoring occurs in the control plane. In our implemeraati
packet header information is extracted and compared tewurr
clusters characteristics (centroids) at line speed, wthidse

60

percentage of packets lost

20

0 L L L L L

0 2 4 ﬂm:(us) 8 10 12 centroids are only updated periodically in the background.
We show that combining this clustering mechanism with
Fig. 9. Packets lost per class for a single queue. a simple gqueue management policy that limits the size of the
output buffers, leads to a selective packet dropping thétlgna
100 T T T T Normu ToP —— targets attack traffic. Additionally, we believe that andyna
1 s detection triggers can be used to adaptively devise theseequ
w0l | management policies.
Future work will include implementation of filter controls
and distributed mechanisms to share clusters informatén b
L 1 tween several nodes to enable concerted actions.
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IV. CONCLUSION AND FUTURE WORK

In this article, we have demonstrated the use of packet
clustering based on unsupervised learning to effectivaly m
igate DDoS attacks. Based on characteristics extracted fro
sampled traffic, we can derive criteria that can be used to
trigger anomaly detection alarms. These criteria incluatekpt



